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ABSTRACT 

An analogy between i n e l a s t i c  s t ra ins  caused by temperature and those  caused by 
creep is presented i n  terms of i s o t r o p i c  e l a s t i c i t y .  I t  is shown how the theore t i -  
cal  aspects can be blended with e x i s t i n g  f in i te -e lement  computer programs t o  exac t  
a piecewise l i n e a r  so lu t ion .  The creep e f f e c t  is determined by us ing  t h e  thermal 
stress computational approach, i f  appropriate  a l t e r a t i o n s  are made t o  t h e  thermal 
expansion of the  ind iv idua l  elements. The o v e r a l l  t r a n s i e n t  s o l u t i o n  is achieved 
by consecutive piecewise l i n e a r  i t e r a t i o n s .  The t o t a l  res idue  caused by creep is 
obtained by accumulating creep res idues  f o r  each i te ra t ion  and then resubmi t t ing  t h e  
t o t a l  res idues  f o r  each element as an equivalent  input .  A t y p i c a l  creep l a w  is 

practical, with a v a l i d  ind ica t ion  of the ex ten t  of creep a f t e r  approximately 20 h r  
of incremental  t i m e .  The general  analogy between body fo rces  and i n e l a s t i c  s t r a i n  
g rad ien t s  is discussed with respect t o  how an i n e l a s t i c  problem can be worked as an 
e las t ic  problem. 

tested f o r  incremental t i m e  convergence. The r e s u l t s  i n d i c a t e  t h a t  t h e  approach is 

INTRODUCTION 

Residual stresses caused by creep are important t o  a i r f rame des igners  because 
t h e  stresses manifest  themselves as excessive deformations, local buckling, or s t ruc-  
t u r a l  f a i l u r e  ( r e f s .  1 to  4 ) .  Effec t ive  a i r f rame design should include t h e  complete 
u t i l i z a t i o n  of ava i l ab le  a n a l y s i s  tools. The purpose of this paper is t o  p resen t  an 
analogus r e l a t i o n s h i p  f o r  p red ic t ing  residual stresses caused by creep i n  built-up 
s t r u c t u r e s .  Using e x i s t i n g  finite-element computer programs, it w i l l  be shown how 
an analogy between i n e l a s t i c  s t ra ins  represent ing temperature and creep p r e s e n t s  a 
v i a b l e  approach to  a complex problem. 
i n  terms of i s o t r o p i c  e l a s t i c i t y ,  and p r a c t i c a l  app l i ca t ions  are also considered. 

The mathematics of t h e  analogy are presented  

NOMENCLATURE 

E 

G 

T 

t 

a 

E. 

V 

Young's modulus, Pa ( lb / in2  1 

shear  modulus, Pa ( lb / in2 )  

temperature, K (OF) 

t i m e ,  hr 

c o e f f i c i e n t  of thermal expansion, m/m K ( i n / i n  OF) 

Kronecker d e l t a  

s t r a i n ,  m/m ( i n / i n )  

a r b i t r a r y  cons tan t  

Poisson s r a t io  



U 

Subscripts: 

AVG 

C 

i , j  ,k,l,m 

P 

T 

stress, Pa ( lb/in2 ) 

average 

creep 

i n  t e ger s 

plasticity 

temperature 

RESULTS AND DISCUSSION 

Strain Relations 

Strain can be considered t o  be composed of an elast ic  part and an inelastic 
part ,  and can be represented as 

E" 
i j  

= E' + 
A i j  

E 

e las t ic  5nelastic' 

( 1 )  

Inelastic strains, E" IMY be composed of several parts, such as temperature, i j '  
creep, and plasticity, i n  which case 

Elastic strains ( t h a t  i s  those that cause stress) may be written as the difference 
between the total  strain and the inelastic strain: 

E' i j  - - ' i j  - €" i j  (3) 

E' I aij - (-) V 6 
i j  2G 1 + V 26 i j  

where 

11 = + + u33 

and 

i j  = 1 when i = j 
6 

2 

( 5 )  

The elast ic  strain, E' is related t o  stress through the generalized Hooke's law 

(ref .  5) for isotropic elasticity 
i j  

( 4 )  
0 



= 0 when i f j &i j 

The general equation ( 4 )  may be rewritten as follows in terms of the right side 
of equation ( 3 )  to include the inelastic strain 

Equations ( 3 )  and ( 4 )  are the constitutive equations whereby a thermoelastic 
c problem can be formulated as 

Similarly, a creep 

The same rationale 

Equations (7 , 

V U - - 6  aij g - g" = 
ij ijT 2G ( 1  + v) 2G ij 

problem can be formulated as 

0 - - 6  aij 
( 1  + V )  26 ij E - "Ij = 2G ij C 

( 7 )  

( 8  

can be extended to a collective problem of creep and temperature: 

U - - 6  aij 
( 1  + V) 26 ij Eij - (E;j 

T 

( 8 ) ,  and (9) lead to several important observations. First, it 
is obvious that equations ( 7 )  and ( 8 )  have a computationally analogous form. This 
allows the conclusion that a creep problem can be computed as a thermoelastic 
problem by equating 

€Yj = E T j  

C . T  

For a thermoelastic problem, the inelastic strain is 

( 1 0 )  

Secondly, equation (91, which states the collective problem of temperature and 
creep effects, also provides the basis for the use of finite-element software for a 
combined thermoelastic and creep analysis in a piecewise linear manner. A piecewise 
linear analysis of a problem in which temperature and creep effects are present is 
approached by combining the creep strain E'! at a discrete time tm with the temper- 

ature strains E:- so that a composite inelastic strain is created. This com- 
ljc 

IJT 
posite strain can be represented as 

l'CT 

("' jT + 6;jC)t = (€IjTC) = (CnIt m 

m tm 

Equation ( 1 2 )  can be used in conjunction 
elasticity relationships. 

( 1 2 )  

with equations ( 7 )  to (9) to form isotropic 
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F i n i  te-Element Me thodology 

Since it w a s  e s t ab l i shed  i n  t h e  previous s e c t i o n  t h a t  a creep problem can be 
computed a s  a temperature problem, t h e  procedure us ing  f in i te -e lement  s t r u c t u r a l  
computer programs is discussed.  The bas i c  problem of computing r e s i d u a l  stresses 
due t o  creep i n  a buil t-up s t r u c t u r e  is r e a d i l y  s u i t a b l e  t o  a piecewise l i n e a r  
a n a l y s i s .  T h i s  i s  p a r t i c u l a r l y  t r u e  i f  t h e  new, very fas t  computers are used. A 
b a s i c  flow diagram presented i n  f i g u r e  1 i l l u s t r a t e s  t h e  approach. 

Since the  necess i ty  f o r  s tudying creep i n  an a i r f rame a p p l i c a t i o n  is the  pres- 
ence of e leva ted  temperature,  it must be assumed t h a t  a the rmos t ruc tu ra l  a n a l y s i s  9 

i s  required.  Therefore,  t he  b a s i c  sequence begins by making geometric, material, 
f o r c e ,  and temperature inpu t s  from which element stresses are computed. The element 
s t r e s s e s  are then input t o  an appropr ia te  creep l a w  and it is determined which of 0 

t h e  elements are creeping. I f  no elements have temperature  and stress combinations 
t h a t  r e s u l t  i n  creep, then t h e  stresses are s ta t ic  and t h e r e  i s  no creep problem. 
However, i f  one or more elements are creeping,  then an amount of creep s t r a i n  is  
computed from the creep l a w  f o r  each element, based on t h e  p a r t i c u l a r  stress and 
temperature  s i t u a t i o n  f o r  t h a t  element. This  amount of creep deduced from the creep 
law is a l s o  based on some predetermined time i n t e r v a l  of s u i t a b l e  convergence. 

The amount of creep s t r a i n  occurr ing  i n  each creeping element must then be con- 
v e r t e d  t o  an equivalent  thermal s t r a i n  cfP. This  i s  m o s t  e a s i l y  accomplished by 
a d j u s t i n g  the  c o e f f i c i e n t  of thermal expansion Q f o r  each creeping  element. Then, 
i n  t h e  case of a t r a n s i e n t  problem, d i f f e r e n t  temperatures  and f o r c e s  are resub- 
m i t t e d  and a new se t  of elenlent stresses is computed f o r  comparison with t h e  creep 
l a w .  Addi t ional  creep s t r a i n s  are compiled and reduced to  c f~ !  i npu t s  so t h a t  t h e  
cyc le  can be repeated f o r  more t i m e  increments. Using t h i s  process ,  t h e  ope ra t ing  
s t r e s s e s  and changes i n  ope ra t ing  stresses with t i m e  are i d e n t i f i e d .  

The t o t a l  r e s idua l  s t r e s s  caused by c reep  a t  t h e  end of m t i m e  cyc le s  is COP 

puted from cumulative creep s t r a i n s  of t h e  ind iv idua l  elements.  Th i s  is a s i n g l e  
computation with the cumulative ind iv idua l  creep s t r a i n s  r ep resen ted  by t h e  quan- 
t i t y  aT. The first step is apply ing  a uniform temperature  t o  t h e  s t r u c t u r e ,  then 
a l t e r i n g  the  c o e f f i c i e n t  of thermal expansion of each of t h e  c reeping  elements so 
t h a t  t he  a l t e r a t i o n  of t h e  q u a n i t i t y  aT equals  t h e  cumulative creep in t h a t  element. 
I f  a problem e n t a i l s  a l a r g e  number of creeping elements,  then a s i g n i f i c a n t  amount 
of e x t r a  labor  is required t o  produce a d d i t i o n a l  element proper ty  and material cards 
t o  desc r ibe  t h e  problem. Problems i n  which t h e r e  are very few creeping  elements and 
t h e  elements are d i sc re t e  ( n o t  connected t o  any o t h e r  c reeping  elements)  may be ap- 
proached by a l t e r i n g  t h e  temperatures  a t  t h e  boundary of t h e  element. This  is dis- .. 
cussed i n  some d e t a i l  i n  t h e  next  sec t ion .  

Applicat ions 

Al t e r ing  a or T. - Consider t he  bas i c  s t r u c t u r a l  s i t u a t i o n  of f i g u r e  2 ,  which 
c o n s i s t s  of a system of f i v e  node p o i n t s  with fou r  elements connect ing t h e s e  node 
p o i n t s .  The b a s i c  i n e l a s t i c  s t r a i n  of t h e  elements caused by temperature  f o r  t h i s  
problem is 

where k = 1 ,  2, 3 ,  4, and II = 5. 
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When t h e  stresses r e s u l t i n g  from a creep problem are computed us ing  t h e  thermo- 
e las t ic  f e a t u r e  of any f ini te-element  computer program, e i t h e r  t he  c o e f f i c i e n t  of 
thermal expansion a or t h e  temperature T must be altered an amount relative t o  t h e  
c reep  s t r a i n .  If t h e  problem is approached us ing  t h e  temperatures  as t h e  altered 
parameter, the  s t r a i n  i n  the  ind iv idua l  elements must be changed by a factor, nkR: 

E” 
i j  

TkR 
(14) 

where k = 1 ,  2 ,  3 ,  4 ,  and 2 = 5. 

Unless the  creeping elements are i so l a t ed ,  discrete, and no t  connected to  any 
o t h e r  creeping elements, a major computational dilemma e x i s t s .  Consider t h e  case 
where t w o  of t h e  elements of f i g u r e  2 (1-5 and 3-5) are creeping. If t h e  problem is 
approached by a l t e r i n g  t h e  temperatures, then  f o r  element 1-5 t h e  appropriate change 
i n  i n e l a s t i c  s t r a i n  is made by a l t e r i n g  t h e  average temperature of t h e  element by 
qkp, such t h a t  

* 

for  t h e  element 3-5 

These i n p u t s  r e s u l t  i n  temperatures of n15 TI, ‘135 T3, and ‘115 ‘135 T5, for node 
p o i n t s  1 ,  3 ,  and 5 ,  respec t ive ly .  

The o v e r a l l  input  is  obviously incons i s t en t  a t  p o i n t  5 for t h e  ind iv idua l  ele- 
m e n t  requirements of equat ions ( 1 5 )  and ( 1 6 ) .  This  r e s u l t  becomes more i n c o r r e c t  as 
a d d i t i o n a l  creeping elements are connected t o  p o i n t  5. Therefore,  a genera l  rule 
c a n  be stated: If creeping elements are no t  d i s c r e t e  and are connected to  o t h e r  
c reeping  elements, the  problem may not  be approached by analogy as a thermoelas t ic  
problem by a l t e r i n g  nodal temperatures.  The s o l u t i o n  to  such a problem r e q u i r e s  the 
a l t e r a t i o n  of the  ind iv idua l  c o e f f i c i e n t s  of thermal expansion of t h e  ind iv idua l  
e l e m e n t s .  

T o  so lve  t h e  f i g u r e  2 problem, do not a l ter  inpu t s  d i r e c t l y  to  t h e  nodes, bu t  
a l te r  inputs  d i r e c t l y  to t h e  elements. A l t e r i n g  t h e  material proper ty  cards ,  t h e  
approach €or t h e  f i g u r e  2 problem would be 

and 

1 

a35 = ‘135 a35 (18)  

Equations ( 1 7 )  and ( 1 8 )  allow inputs  c o n s i s t e n t  with equat ions  ( 1 5 )  and ( 1 6 ) ,  
regardless of how many elements within t h e  system are creeping or how they are 
interconnected.  

5 



-- Uniformly i n e l a s t i c a l l y  s t r a ined  element. - A f r equen t  uncer ta in ty  concerns t h e  
r e l a t i o n s h i p  between f r e e  thermal expansion and stress. Consider a completely 
unres t ra ined  elastic body with a uniform i n i t i a l  temperature. The body i s  then 
subjected to  a uniform temperature change, r e s u l t i n g  i n  thermal deformation. The 
s i t u a t i o n  is also possible  f o r  creep o r  p l a s t i c i t y .  Because t h e r e  is  dimensional 
change - and s t ra in  is  def ined as a dimensional change -why is  the re  no stress? 
The answer l i es  i n  the f a c t  t h a t  the  t o t a l  s t r a i n  and the  i n e l a s t i c  s t r a i n  ( U T )  are 
equiva len t  and there  is no e l a s t i c  s t r a i n ,  hence, no stress. This  is  demonstrated 
i n  equat ions ( 3 )  and ( 6 )  where the t o t a l  s t r a i n  is  equal  to the  deformation and t h e  
i n e l a s t i c  s t r a i n  i s  equal t o  aT, which is also t h e  same as t h e  deformation, or 

€ = €1' = UT 
i j  i j  

t he re fo re ,  

and hence 

u = o  
i j  

I f  the  deformation is  i n  any way r e s t r a i n e d ,  then 

€ # €" = aT  
i j  i j  

t he re fo re ,  

and hence 

The s o l u t i o n s  of i n e l a s t i c  problems can be changed t o  those of elastic problems 
by a genera l  analogy between body fo rces  and i n e l a s t i c  s t r a i n  grad ien ts .  The gen- 
eral  analogy i s  t h a t  t he  s t r a i n  d i s t r i b u t i o n  i n  a body s u b j e c t  to  a given set  of 
body and su r face  forces  with i n e l a s t i c  s t r a i n  is the  same as the  s t r a i n  d i s t r i b u t i o n  
i n  an i d e n t i c a l  body w i t h  no i n e l a s t i c  s t r a i n ,  b u t  with an a d d i t i o n a l  set of body 
and sur face  forces .  References 6 and 7 provide t h e  analogy background. The special 
app l i ca t ion  t o  the temperature problem i s  sometimes known as Duhamel's Analogy. 

Creep l a w  convergence. -Because the bas i c  computational approach of f i g u r e  1 
depends o n  piecewise l i n e a r  sequencing, it is  extremely important  t o  eva lua te  t h e  
convergence of the  computational t i m e  increment. A creep experiment descr ibed i n  
re ference  1 and a creep l a w  obtained for the  t i t an ium a l l o y  Ti-6A1-4V reference  2 
are used t o  examine a convergence. The following c reep  l a w  w a s  examined f o r  
stresses and  temperatures t y p i c a l  of a f u t u r e  airframe: 

Ln E"  = -24.09 + 22.54T + 0.000006 u2 + 0.905 Ln u + 0.433 Ln t (19)  
C 

i j  
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The creep l a w  w a s  examined f o r  convergence f o r  s e v e r a l  computational t i m e  incre-  
m e n t s  ranging f r o m  0.5 t o  6.0 hr. The r e s u l t s  a r e  presented  i n  f i g u r e  3. A conver- 
gence t o  within 5 percent  of t h e  asymptote can be achieved with t i m e  increments as 
s m a l l  as  1 hour. This r e s u l t  w i l l  vary with o the r  materials, hence, t h e  r e s u l t  must 
be in t e rp re t ed  t o  see i f  t h e  material examined d i sp lays  t h e  classic primary and sec- 
ondary creep behavior. Figure 4 shows creep s t r a i n  as a func t ion  of t i m e  for  t h e  
Ti-6A1-4V material (ref. 8). Defin i te  primary and secondary e f f e c t s  are shown t o  
develop i n  less than 20 hr. Twenty hours of incremental  a n a l y s i s  ( 2 0  t o  40 itera- 
t i o n s )  provided a re levent  answer, po in t ing  out  t h e  s ign i f i cance  of t h e  creep resi- 
dues for m o s t  veh ic les  contemplated a t  t h i s  t i m e .  This  i nd ica to r  approach appears 
f e a s i b l e  because t h e  l a rge  numbers occur e a r l y  i n  t h e  problem (primary creep), making 
t h e  ser iousness  of t h e  creep evident.  

Determining a v a l i d  creep l a w  may well  be t h e  mos t  formidible  chal lenge i n  t e r m s  
of p red ic t ing  creep res idues  i n  high-speed airframes.  
( re f .  9) t h a t  t h e r e  is  a great d i f fe rence  between s teady-s ta te  creep l a w s  and c y c l i c  
creep l a w s .  There is also evidence ( r e f .  3) t h a t  besides temperatures,  t i m e ,  and 
stress the  material th ickness  must a l s o  be considered i n  de f in ing  a creep l a w .  
Therefore,  when approaching creep e f f e c t s  i n  a i r f rames,  t h e  d i f f i c u l t y  of es tab-  
l i s h i n g  t h e  important pe r iphe ra l  i t e m  of a v a l i d  creep 1aw.must not  be overlooked. 

I t  has been e s t a b l i s h e d  

CONCLUDING REMARKS 

When a new airframe is being developed, t h e r e  is a s t rong  tendency t o  r e l y  on 
proven, demonstrated computational approaches t o  design and ana lys i s .  This  tendency 
h a s  been a s t rong  motivator i n  t h e  log ic  of t h e  computational approach presented  i n  
t h i s  paper. The analogy between t h e  i n e l a s t i c  s t r a i n s  caused by temperature and 
creep  is presented  i n  t e r m s  of i s o t r o p i c  e l a s t i c i t y .  
a spec t s  can be blended with e x i s t i n g  f ini te-element  computer programs t o  exac t  a 
piecewise l i n e a r  so lu t ion .  The creep e f f e c t  can be determined by us ing  t h e  thermal 
s t r e s s  computational approach, i f  appropriate  a l t e r a t i o n s  are made t o  the arT of t h e  
ind iv idua l  elements. The o v e r a l l  t r a n s i e n t  s o l u t i o n s  can be achieved by consecut ive 
piecewise l i n e a r  i t e r a t i o n s .  The total  r e s idue  caused by creep can be obtained by 
accumulating creep res idues  f o r  each i t e r a t i o n ,  then  t h e  total  r e s idues  f o r  each 
element a r e  resubmitted a s  an equivalent input .  

It  shows how t h e  t h e o r e t i c a l  

A t y p i c a l  creep l a w  w a s  t e s t e d  f o r  incremental  t i m e  convergence. The r e s u l t s  
i nd ica t ed  t h a t  t he  approach w a s  q u i t e  p r a c t i c a l ,  wi th  a v a l i d  i n d i c a t o r  of t he  e x t e n t  
of creep p resen t  a f te r  about 20 h r  of incremental  t i m e .  
body fo rces  and i n e l a s t i c  s t r a i n  gradients  w a s  d iscussed with respect t o  how an 
i n e l a s t i c  problem can be worked as a n  e l a s t i c  problem. 

The genera l  analogy between 
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